Comparison of linear and nonlinear shallow wave water equations applied to tsunami waves over the China Sea
نویسندگان
چکیده
This paper discusses the applications of linear and nonlinear shallow water wave equations in practical tsunami simulations. We verify which hydrodynamic theory would be most appropriate for different ocean depths. The linear and nonlinear shallow water wave equations in describing tsunami wave propagation are compared for the China Sea. There is a critical zone between 400 and 500 m depth for employing linear and nonlinear models. Furthermore, the bottom frictional term exerts a noticeable influence on the propagation of the nonlinear waves in shallow water. We also apply different models based on these characteristics for forecasting potential seismogenic tsunamis along the Chinese coast. Our results indicate that tsunami waves can be modeled with linear theory with enough accuracy in South China Sea, but the nonlinear terms should not be neglected in the eastern China Sea region.
منابع مشابه
Can Tsunami Waves in the South China Sea Be Modeled with Linear Theory?
We have compared the results from linear and nonlinear theories of the shallow-water equations applied to the South China Sea. Our results indicate that tsunami waves in the South China Sea can be modeled with linear theory. There is little difference in the probability predicted by nonlinear theory and that forecasted by linear treatment on tall waves, more than two meters high, which may impi...
متن کاملGPU-SPH simulation of Tsunami-like wave interaction with a seawall associated with underwater
Investigation of the waves generated by underwater disturbances gives precious insight into the effect of man-made underwater explosions as well as natural phenomena, such as underwater volcanoes or oceanic meteor impact. On the other hand, prediction of the effects of such waves on the coastal installations and structures is required for preparation worthwhile criteria for coastal engineers to...
متن کاملISPH Numerical Modeling of Nonlinear Wave Run-up on Steep Slopes
Non-breaking tsunami waves run-up on steep slopes can cause severe damages to coastal structures. The estimation of the wave run-up rate caused by tsunami waves are important to understand the performance and safety issues of the breakwater in practice. In this paper, an Incompressible Smoothed Particle Hydrodynamics method (ISPH) method was utilized for the 2DV numerical modeling of nonli...
متن کاملاستفاده از نرمافزار ComMIT در پهنهبندی خطر سونامی در سواحل جاسک
In the Tsunami of Dec. 26, 2004, although there was a large distance between the earthquake center of Indian Ocean and coastal cities of Iran, the Tsunami waves brought some damages in Chabahar coast. This means that if the earthquake center was closer to Iran, Iran’s coastal regions would have confronted serious danger... In the present study, we used ComMIT software (Community Model Int...
متن کاملBuilding Damage Assessment Using Scenario Based Tsunami Numerical Analysis and Fragility Curves
A combination of a deterministic approach and fragility analysis is applied to assess tsunami damage caused to buildings. The area selected to validate the model is Imwon Port in Korea. The deterministic approach includes numerical modeling of tsunami propagation in the East Sea following an earthquake on the western coast of Japan. The model is based on the linear shallow-water equations (LSWE...
متن کامل